数学名人手抄报
手抄报是一种可传阅、可观赏、也可张贴的报纸的另一种形式。手抄报也是一种群众性的宣传工具。它就相当于缩小版的黑板报。?下面是我为您带来的是数学名人手抄报相关内容,希望对您有所帮助。
数学手抄报内容:华罗庚的故事
华罗庚(1910年11月12日~1985年6月12日),江苏金坛人,国际数学大师,中国科学院院士,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。[1]他为中国数学的发展作出了无与伦比的贡献。 被誉为“中国现代数学之父”,“被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国著名数学史家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院的院士”。
华罗庚先生早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。他在多复变函数论、矩阵几何学方面的卓越贡献,更是影响到了世界数学的发展。也有国际上有名的“典型群中国学派”,华罗庚先生在多复变函数论,典型群方面的研究领先西方数学界10多年,这些研究成果被著名的华裔数学家丘成桐高度称赞。华罗庚先生是难以比拟的天才。
著名数学家劳埃尔·熊飞儿德说:“他的研究范围之广,堪称为世界上名列前茅的数学家之一。受到他直接影响的人也许比受历史上任何数学家直接影响的人都多”,“华罗庚的存在堪比任何一位大数学家卓越的价值。”
哈贝斯坦:“华罗庚是他这个时代的国际领袖数学家之一。”
克拉达:“华罗庚形成中国数学。”
美国数论学家莱麦尔说:“华罗庚有抓住别人最好的工作的不可思议的能力,并能准确地指出这些结果可以改进的`方法。他有自己的技巧,他广泛阅读并掌握了20世纪数论的所有制高点,他的主要兴趣是改进整个领域,他试图推广他所遇到的每一个结果。”
丘成桐:“先生起江南,读书清华。浮四海,从哈代,访俄师,游美国。创新求变,会意相得。堆垒素数,复变多元。雅篇艳什,迭互秀出。匹夫挽狂澜于即倒,成一家之言,卓尔出群,斯何人也,其先生乎”
王元先生说,从数学领域来说,大致分为两个:一个是分析,一个是代数。绝大多数的数学家一般只在其中一个领域里做出贡献,比如我自己,就是在分析方面;但华罗庚却在两方面都有很大的贡献。另外一方面,数学又分成纯粹数学和应用数学,华罗庚也是同时在这两方面都有很大贡献。
吴耀祖:“华先生天赋丰厚,多才好学,学通中外,史汇古今,见识渊博,论著充栋。他的生平工作和贡献,比比显示于他经历步过的广泛数学领域中,皆于可深入处即深入探隽,可浅出的即浅明清澈,能推广的即面面推广,能抽象的即悠然抽象”
“我没有元老他们这么幸运,能够成为华老的入室弟子”,在中国科学院院士、著名数学家杨乐看来,没有成为华老正式的徒弟是一生的遗憾,“但在数学研究的道路上,华老确实深深地影响着我”。
美国著名数学史家贝特曼著文称:“华罗庚是中国的爱因斯坦,够成为全世界所有著名科学院院士”。
被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
被誉为“人民科学家”。
;数学家欧几里得手抄报
大数手抄报画画如下:
首先在顶部写上大数的认识当标题,可以给标题做一个创意的设计,让标题看起更精致。在右侧画上一个猫耳朵样式的边框,底部画一个方形边框,可以在边框内画上表格。
边框上方画上一个小女孩,底部画上草地,左右两侧画上叶子,顶部画上波浪线当天空,这样手抄报线稿就完成了。下面开始上色,人物的衣服用粉色涂一下,天空用蓝色涂一下,五角星用**涂。
标题用红色、**、紫色、玫红色和绿色涂一下,圆形边框用橙色涂,方形边框用**涂。最后整理一下画面,在中间画上格子线,这样一幅好看的大数的认识手抄报就完成了。
内容可以写
大数的认识:
10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
多位数的读法:
从高位数读起,一级一级往下读。万级的数要按照个级的数的读法来读,再在后面加一个万字。每级末尾不管有几个零都不读,其他数位有一个零或连续几零,都只读一个。
多位数的写法:
从高级写起,一级一级往下写。当哪一位上一个计数单位也没有,就在哪一位上写0。特别注意:多位数的读写都先划上分级线。
同学们在绘画完有关数学的手抄报之后可能都不知道如何去填写手抄报中的内容,其实我们可以在手抄报中誊写一些数学家的介绍、学习数学的顺口溜等。
组织学生或品尝、阅读,或提出修改建议,或评选优秀作品,或交流办报经验。与此同时,有意组织学生开展手抄报评比、优秀作品欣赏、优秀作品展等活动。
在活动中增长了见识,培养了兴趣,提高了学习数学的自主性和自觉性,而且这一期又一期、一张又一张图文并茂的、迷人的数学手抄小报在展览的同时装饰了教室,美化了校园。学生从中可以受到潜移默化的思想情感熏陶和审美教育。
数学名人手抄报简单好看
数学家欧几里得手抄报内容参考如下:
欧几里得,古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。
欧几里得在《几何原本》中还对完全数做了探究,他通过2^(n-1)·(2^n-1)的表达式发现头四个完全数的。
当n=2:2^1(2^2-1)=6当n=3:2^2(2^3-1)=28当n=5:2^4(2^5-1)=496当n=7:2^6(2^7-1)=8128一个偶数是完全数。
当且仅当它具有如下形式:2^(n-1).(2^n-1),此事实的充分性由欧几里得证明,而必要性则由欧拉所证明。
其中2^(n)-1是素数,上面的6和28对应着n=2和3的情况。我们只要找到了一个形如2^(n)-1的素数(即梅森素数),也就知道了一个偶完全数。
在手算时代梅森素数可使人们更方便的计算完全数,在计算机时代更是得到了广泛深入的应用,计算机的CPU可以更方便的计算各种数。
尽管没有发现奇完全数,但是当代数学家奥斯丁·欧尔证明,若有奇完全数,则其形式必然是12p+1或36p+9的形式,其中p是素数。在10^300以下的自然数中奇完全数是不存在的。
数学名人:
勒奈·笛卡尔
勒奈·笛卡尔(Rene Descartes),1596年3月31日生于法国都兰城。笛卡尔是伟大的哲学家、物理学家、数学家、生理学家。解析几何的.创始人。笛卡尔是欧洲近代资产阶级哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,容唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。笛卡尔堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
欧几里得
欧几里得(希腊文:Ευκλειδη?,约公元前330年—前275年,亚历山大里亚),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人。
阿基米德
阿基米德(Archimedes 公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要勇于寻找真理。
趣味数学知识
1、 两个男孩各骑一辆自行车,从相距2o英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1o英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2o英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼(john von neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道。
本文来自作者[箫璃]投稿,不代表巨鲨号立场,如若转载,请注明出处:https://www.jvsha.com/jvs/5487.html
评论列表(3条)
我是巨鲨号的签约作者“箫璃”
本文概览:数学名人手抄报 手抄报是一种可传阅、可观赏、也可张贴的报纸的另一种形式。手抄报也是一种群众性的宣传工具。它就相当于缩小版的黑板报。?下面...
文章不错《数学名人手抄报》内容很有帮助